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Abstract

In this paper we consider the approximate solution of a class of second

order elliptic equations with rough coefficients. Problems of the type

considered arise in the analysis of unidirectional composites, where the

coefficients represent the properties of the material. We present several

methods for this class of problems, and show that they have the same accuracy

as usual methods have for problems with smooth coefficients. We refer to the

methods as special finite elements methods because they are of finite element

type but employ special shape functions, chosen to effectively model the

unknown solution.
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Special Finite Element Methods for a Class of

Second Order Elliptic Problems with Rough Coefficients

1. Introduction

In this paper we consider the approximate solution of a class of second

order, two dimensional elliptic boundary value problems with rough or highly

oscillating coefficients. We apply an approach proposed by Babu ka and Osborn

15] for the approximate solution of problems with rough Input data. This

approach was applied to one dimensional problems in Babu~ka and Osborn [4].

Specifically, we consider boundary value problems of the form

(1.1)

a a a a{Lu(x,y) -- (aCx,y) xu(x, y)) - -(a(x,y),yu(x'y)) = fCx,y) V (xy) e a

u(x,y) = 0 V (x,y) e 80,

2 2where Q is a bounded domain in R, f is a function in L (Q), and where

the function a e LO(Q) satisfies

(1.2) 0 < a S a(x,y) S R < V V (x,y) e 0,

where a and 1 are constants. Throughout most of the paper we will also

assume that a(x,y) locally varies sharply in at most one direction, a

requirement on the coefficient a that will be made precise later (see

Remarks 2.1 and 4.1); such coefficients will also be called (curvilinear or

straight line) unidirectional. If the coefficient a is rough, then the

solution u to (1.1) will also be rough; to be specific, u will not in

general be in H2(0) and may not be in Hl+c(0) for any c > 0.

Problems of this type arise in many applications; we will be especially

concerned with applications to unidirectional composite materials (briefly,

composites). In these applications the coefficient a(x,y) represents the



properties of the material, and changes abruptly. We will also be interested

in problems in which a(x,y) changes smoothly but rapidly. We will take the

liberty of referring to both types of problems as composites. In Figs.

1.1-1.4 we show some typical configurations for unidirectional composites.

In these figures the coefficient is constant or is changing slowly along the

lines or curves and is changing sharply in the transverse direction; the

Fig. 1.1. A Straight Line Unidirectional Composite

Fig. 1.2. A Tubular (Curvilinear Unidirectional) Composite
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absence of lines in a portion of the material indicates a constant or a slowly

varying coefficient. We can interpret the lines as fibers in the composite.

This interpretation is, of course, symbolic for problems In which a(x,y)

changes smoothly but rapidly.

Fig. 1.1 shows a straight line unidirectional composite or coefficient

and Fig. 1.2 shows the cross-section of a tubular composite. Figs. 1.3a,b

show reinforced panels. The area A in Fig. 1.3b indicates a region in which

Area A

'Ii!

Fig.. 1.3a. Reinforced Panel Fig. 1.3b. Reinforced Panel

a(x,y) is smoothly becoming a constant or a smooth function. We refer to the

materials or the coefficients in Figs. 1.2-1.3 as curvilinear unidirectional.

Still more complicated problems can be considered. An example is shown In

Fig. 1.4. While Figs. 1.1-1.3 depict problems in which a(x,y) is unidirec-

tional everywhere in the domain, the problem depicted in Fig. 1.4 corresponds

to a coefficient that is unidirectional except on certain lines. Hence we

3



Fig. 1.4 Irregular Unidirectional
Composite

call it an irregular unidirectional composite. This type of problem will be

addressed in detail In a forthcoming paper. We note that certain interface

problems can be naturally treated as problems of composites. With this

approach It is not necessary to fit the interface with the finite elements, as

is done with the standard approach.

A finite element method is obtained by restricting the weak formulation

of problem (1.1),

S1M
uHO ( f )

(1.3) r. 1(,

00B(u,v) a grad u • grad v dxdy = fv dxdy V v e H1 0 )

to finite dimensional trial and test spaces. The outline of the approach

given in [5] is as follows:

1) Characterize the space of solutions corresponding to the space of

right-hand sides (in our case we suppose f e L2 (n)). This will involve a

regularity result. Although regularity results are well-known for elliptic

problems with smooth coefficients, they are not available In a direct form for

our problem. Such results will be discussed In Section 2.

4



2) Select trial spaces that have good approximation properties. The

approximation properties of the trial functions or shape functions are

directly tied to the regularity of the solution. For example, if the solution

u of (1.1) is not In H2 (0), then It is well-known that the usual finite

element method based on piecewise linear approximating functions produces

inaccurate results. The problem of selecting optimal trial functions is not

simple; in practice, one would like to find a trial space that performs almost

as well as the optimal one but that can be reasonably implemented. We use

the phrase special finite element methods to denote methods with this type of

special shape functions.

3) Select a test space so as to ensure the Inf-sup (or stability) con-

dition is satisfied and so that the resulting finite element method can be

reasonably implemented.

We will use this approach to design methods of finite element type which

will yield, roughly speaking, the same accuracy as the usual finite element

method when a is smooth, but strikingly improved accuracy when a is rough.

The organization of the paper is as follows. In Section 2 we present the

regularity results needed for the problems we are dealing with. (Although

Theorem 2.4 presents a regularity result for problems of the type depicted in

Fig. 1.4, the complete treatment of which will, as mentioned above, be the

subject of a forthcoming paper, we have included It for completeness.) Then

we will propose and analyze several methods to solve problem (1.1) in the

special case in which 0 = Q = (0,1) x (0,1) and a(x,y) = a(x) is a

function of x only. This study is carried out in Section 3, where we

propose three distinct approximation methods. A function a(x,y) = a(x) of

x only is an example of a function that locally varies sharply in at most one

direction; in fact, such an a(x,y) globally varies sharply in at most one

5



direction. a(x,y) can also be referred to as straight line unidirectional

(see Fig. 1.1). In Section 4 we present a further development of two of the

methods from Section 3 in order to treat problems of the type depicted in

Figs. 1.2 and 1.3 with curvilinear unidirectional coefficients.

As noted above the approach presented In this paper is thoroughly studied

in the one-dimensional case in [4]. Techniques similar to special elements

were used in Ciarlet, Natterer, and Varga (81 and in Crouzeix and Thomas [91

to handle degenerate one-dimensional elliptic problems. We also mention the

recent work of Moussaoui and Ziani [16], which deals with the same kind of

problems with a method similar to our Method I, presented in Subsection 3.1.

Finally we mention the papers (3, 17, 181, which are related to our approach.

Throughout the paper, we will use the L2 ( )-based Sobolev spaces H k(),

consisting of functions with partial derivatives of order less than or equal

to k in L2 (D). These spaces are equipped with the norms and semi-norms

IiuI{k n = f Du 2

2 2 2x~

lu2 = Y D'uj 2

£2 Ix=k

We will also use the spaces HkC() for fractional k. H0 (2) consists of
0

those functions in H (Q) which vanish on aQ. We will also use the space

H- (£) = [H()]'. Throughout, C will denote a generic constant. When we

say "there exists C = C(e,3)," we mean that C depends on the coefficient

a(x,y), only through its upper and lower bounds a and 1 (cf. (1.2)).

The authors would like to thank Professor L. C. Evans for calling the

theorem of S. N. Berstein used in Section 2 to their attention.
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2. Regularity Results

It Is clear that problem (1.1) has a unique (weak) solution in H (0);
0

cf. (1.3). This is an Immediate consequence of the Lax-Milgram theorem.

Furthermore,

1lu 1 , 0 S C(a)llfl[ol
n .

But if a(x,y) is rough, then u may not be in H 1+(0) for any c > 0, and

therefore we cannot expect any reasonable rate of convergence for the usual

finite element method. Nevertheless, as a consequence of the assumption that

a(x,y) is unidirectional, the solution u does satisfy a regularity property

that can be employed in the derivation of an approximation method for (1.1)

with a good rate of convergence, even though a(x,y) is rough.

It is the purpose of this section to prove such regularity results, first

for the model problem consisting of (1.1) with 0 = 90 = (0,1) x (0,1) and

the coefficient a(x,y) satisfying a(x,y) = a(x), i.e., with a straight line

unidirectional coefficient (cf. Fig. 1.1), and then for the more general

problem with a curvilinear unidirectional coefficient (cf. Figs 1.2-1.3).

Finally we prove a regularity result that will be applied in a forthcoming

paper to a problem with an irregular unidirectional coefficient (cf. Fig.

1.4). Our main tool is a theorem of Bernstein [6], [13, Section 3.17] for

elliptic equations in non-divergence form, which we now state.

Consider the problem

a a2u 82 u a2u

- -2a -- an
(2.1) 11ax 2 2 12 8xay 22 - f in0

u= 0 on all,

where 0 Is a bounded convex domain In R2 with a Lipschitz and piecewise

C2  boundary a and where the functions a ij L(0) satisfy

7



2 2 2

(2.2) P . :52 ajj(xY)cj C sp2 V (x, y) e ni, V C R2

i=1 i,J=1 i=1

with a2 1 = a12, where u and p are positive constants. Note that the

equation in (2.1) is in non-divergence form.

Theorem 2.1 (Bernstein). For each f e L2(0l), problem (2.1) has a unique

solution u e H2 (Q) n H1 (). Furthermore, there is a constant C(.,W),
0

depending on v and g but independent of f, such that

(2.3) IU1 2fl,0 < C(V,.)llfIfo1 . U

Our hypothesis on 0 is not identical to the one in [13]. To prove

that (2.3) is still valid for such a domain, one can use the a priori

estimates given in [11, Section 3.11.

The first application of Bernstein's Theorem will give a regularity

result for problem (1.1) when 0 = 0  and a(x,y) = a(x). Corresponding to

problem (1.1), with this assumption, we define the space

(2.4) HL( u) = u: a(xA , 8u

with the norm

(2.5a) Hull2, HuIIl 2  + lul 2
L,01 , a L, 12'

where

(2.5b) lul~f 2 J,[ala-( au-- 2 u12 2,2 2 ddy

Theorem 2.2. Suppose Q = fO and a(x,y) = a(x). Then for each f e L (i)

0the solution u of (1.1) is in Ho(fl) r Lf) uteroe hei

constant C = C(a,9), depending on a and 1 but independent of f, such

8



that

(2.6) iIUL,n : C( , )I1fi1oa(.

Proof. Let u be the unique solution to (1.1) in H1(M). We introduce the

change of variables or mapping

ds,

(2.7) (x) =

fi aT' (y) =

and the notation

(2.8) a(x(x),y(y)) = u(x,y), (x,y) e Q.

The mapping (2.7) maps the domain Q onto = (0, a(s) )X(0,). We see

1I  8u 8u 1

that u e H2 (M) if and only if u e H (C), aa, au H'(M), which is

equivalent to u e HL(Q). We also note that the weak formulation (1.3) of

(1.1) is transformed into

(2.9) { u0 ( + 2

a ay $ Q

The system (2.9) is simply the variational formulation ofI2- 2-a2 -2 a2
- -a -- =af I n Q

(2.10) ax2  a -2

U = 0 on 8f.

Note that while the equation In (1.1) is in divergence form, the equation in

(2.10) Is in non-divergence (as well as in divergence) form. As a consequence

1of Theorem 2.1, (2.10) is uniquely solvable in H6(5) n H2 (6) and

(2.11) IIGII2,f, :5 c( ,P)ll 1llo,5 t

Since (2.10) is uniquely solvable In H0(5), we conclude that as defined
0

9



in (2.8), which satisfies (2.9), coincides with the solution of (2.10) and

hence lies in H1 (6) n H2 (6) and satisfies (2.11). Thus u e Ho(Q2) r HLcM2 ),0 0

which is the first conclusion in the theorem. If we change variables in the

estimate (2.11) to return to the original variables, we obtain

H 2 m dxdy+ ,u,2 +u-- !1d1]d

-L J.x(1 )(,)alo jyI

au 2 8 2,u 2 18aC2 u 2)+f -1l+ -aI -I+ax yxay a ay 2

which is~d 
+(2. 2 +, a;1).)

f-2-- if, a2 -82' -

(Iua12a2 au 2 2j )d

1 I-21

a 2,6

:5mx~,1)C2 --)119 12

a 0,0-

which is (2.6).

Theorem 2.2 was proved by making a global change of variables and then

applying the Bernstein result. The global change of variables exists because

a(x,y) globally varies sharply in one direction: a(x,y) = a(x). We now

prove a second result In which we assume the existence of only a local change

of variables (cf. Figs. 1.2-1.3).

Let X c 0 be open and assume that we have a system of orthogonal

curvilinear coordinates (Cn) defined on X. More precisely, regarding Z

and (g,"') we assume

(i) the functions gn are defined on K and are twice continuously

10



differentiable,

Cii) (g,71) : -Z' is one-to-one and onto,
(fli) 8( ,i) > x > 0 on X,

a(x,y) -

(iv) grad •grad i) = 0 in X,

1 2 1 2
v) X is a rectangle in 4,n, I.e., ' = ex )x ad,),

vl) r% a Q = 4, in which case all edges of X are called
interior edges

or

the union of one or more edges of Z, in which case
these edges are called boundary edges and the
remaining edges are called interior edges.

The union of the interior edges is denoted by E. We suppose further that

(2.12) a(x,y) = a'(C) V Cx,y) e X,

where we use the notation, for any function w defined in X,

w'(9(xy),T)(x,y)) = w(x,y), (x,y) e E.

See Figs. 2.1a,b for typical configurations.

Y

y

Level~e cuve of
0 Level curves of

Lel curves of ' i 

Level curves of

x x

Fig. 2.la Fig. 2.lb
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1
Theorem 2.3. Let u be the solution in H1 (0) of (1.1), where we assume

0

that f e L2 (f) and that a(x,y) satisfies assumptions (1.2) and (2.12),

where Z,(,n) satisfies conditions (i) - (vi) above. Let 0 c X be open and

satisfy Oc X if fnc8li= 0 and 86a8Ec 8a if fn8al*o, and

let 0' be the image of 0 under the mapping (C,ij) (cf. Figs. 2.1a,b).

Then there is a constant C = C(aO, ,j,d) depending on a, , , i7, and d

but independent of f, such that

a 8'u' 2 ,,a2Ulf2 18_2Uli
(2. 13) [a 1 - (a a )I + a' R - + al 2 1 d d <- (,1, ,7,d 1f1 ,i

where d = {dist(O, E), if E 0
t1, If E= o

Proof. Clearly u (more precisely, ul, ) satisfies

u E HI M

(2.14) 1dd=
(2.1) agra u * grad v dxy fv dxdy Vv eH (z).

Ix E 0

Introducing the change of variables (g,in) In (2.14) we get

(215 a u' 8v' 2 au' V' 2) a(xy) ddn(2.15) a'@ @ grad I+O gra 71 d( .

8(7 ) 1 3 7f f'v' a(x'y)dd V v' e H )

Now we introduce a second change of variables,

(2.16) dt -

where is the g-coordinate of the left edge of 1'. We will use the

notation

12



~'(~1), i(~~i) =w'~,i),(~,~)e M', for any function w' onV

and

' = image of ' under the mapping (Q,).

Applying this change of variables to (2.15) we get

F a 8' av' -,2-, aii' av' 1 r - - 1-(2.17)] + a a2  dtdj a Y dtdi V e H 0
a--- at a (C1

where

(2.18) a1 (4,n) = Igrad 12 a2 (4.n) = Igrad n11-[ a- a gad 712 a-47~Y

To apply Theorem 2.1, we need to introduce Dirichlet boundary conditions.

From condition (vi) we know that any edge of I is either an interior edge or

a boundary edge. Then, through the correspondence determined by the mappings

C n) ad (t, j), we will refer to the interior and boundary edges of Z'

and E'. Now let ' E C (') with j'(j) = 0 for (Qj) near the

Interior edges of '. Then for v' e H 1('), j' ' e H(') and we can
00

replace v1  by i'v' in (2.17) to get

.o , ,o _,+, j, au. av om + a . dt.i] ja I -a v a j J ad a 7?

2t at a

= r , ,7a, (x'Y) dtd

or

(2.19) [ ( + a(vi')--d~di= F ' d~dj,

where

13



(2.20) F (' ' )- 1 -2a

r-, ~' -2-, 8a''
-'dlvt, ia 1 -,a a 2 -j

Writing w = u'@', from (2.19) we get

w e H CV(t)

a--0

f Lw j 1 1 +a a 2 - ;-ddJ f Fv' d~d V V' e H CE't).

w e () since ' = 0 near the interior edges of Vo. Since u' is inw H0

(-'), the functions gn are C , and ' = a'( ), we see that F is in

L 2(E'). The system (2.21) is simply the variational formulation of

8])L2- r aw - F in V-(2.22) ag a e - al a-

w = 0 on at'

The equation in (2.22) can be formally written as

2aa, aw 2 N aw~,a8w -,2~ 8w- 18+ ... 2 28
(2.23) -a - -- a-=--+ Fa + - G.

1-2 2-2 a a

Denote by W the unique solution in H2 (±') A H1C') of

-, a2W 2 a2W G,(2.24) - a - -a a -=G-

which exists by Theorem 2.1 and which satisfies

(2.25) IIWII2 , g C(x, ,g, i ) 1IGII, ,.

Now w e H1 (') solves the same problem formally. We want to show that
0

w = W, and hence that w e H2 (t') and satisfies (2.25). Writing (2.24) in

divergence form we obtain

14



a , 2 , 2 8aw

at 1 a ai r a a a(2.26) = -'- ,-8 8 , 8

F 18lw + -,2 28 I8 a -,2 28W

at at aj aj at at a

Letting U = W - w and using (2.22) and (2.26) we see that

(2.27) 8 a2a j, -n8-
at Cai a)- -i2 a

1 a- 1U -2 a8u
_______ a -- in V'a9 at ai ai

U=o on a',

where we understand the equation in the weak sense. It will suffice to show

that U =O.

Let T H H (') C-') be the solution operator corresponding to the
0

problem (2.22), i.e., let TF = w. Then from (2.27) we get

a 1U - 2 a "U.(2.28) U = T 1  au -
(- at at ai aj

Since T H -(') --H0 C() is bounded and HO(t') Is compactly contained
0

in H C),we see that A :H(,')-H0( ') Is compact. Suppose now that

U * 0. Then from (2.28) we see that I Is an eigenvalue of A. Hence 1 is

an elgenvalue of A ; let V be an associated elgenfunctlon.

We can choose V' e H2 (') n H0(V') so that 11V - V'1it,, < ll't'.

Then (VV')H1(t,) * 0 and from the Fredholm alternative we see that the

problem

15



(2.29) (I - A)Z = V'

has no solution in H ('). Recalling the definition of A we see that
0

equation (2.29) can be written

1 8Z -12 282Z V(2.30) z- T a - a

which can be formally written as

a 
-a

a, __ __ 2 a a

at) a i 2a

1 Z-,2 - a _ a N a-at at ai ai at 1at a ta

or

a - ai2 1 r a v 2
-a --a - - a t -aQ

But Theorem 2. 1 shows that this equation has a solution Z in H2 (t') n

H i) It is immediate that this Z solves (2.30) and hence solves (2.29),
0

a contradiction. Therefore we conclude that U = 0. We have thus shown that

w = W and hence that w e H2 ') and

(2.25') 1lwl 2  , _< C(x, I3,C, I) Gjlot,.

Now the function ' can be chosen as a cut-off function satisfying

= on 6', 1Dj'I s C(a')-l', and ID2 j I s C(d')-2, where C is some

positive constant, and

fdist(aI t'), if ' *

Then from the expression for G In (2.23) and from (2.20) and (2.18) we have

11 G1o, t, : C( , ,(a,71 ) - 2  11 fI0, n.

16



Thus from (2.25') we see that

(2.31) iii'i2 ,, IwI2 ,, : C((,x,,ma') IfIIo0 n .

Now changing from Ci back to Ci in (2.31) we obtain

(f ~aai I~a~]2 2 aI~ 2 + I 2d1 ] 1/2

5 c (a, , , ' f 11 ~0,0,

which yields (2.13) since C1 (a,3, ,-)' < d : C 2 (, is, )d

Remark 2.1. Equation (2.12), with (C,n) and X satisfying the conditions

Ci)-(vi), is basis for the precise meaning of the phrase "a locally varies

sharply in at most one direction," which is fully formulated in Subsection 4.1

(see Remark 4.1).

Remark 2.2. If the mapping function g+i1 is analytic, then the above

analysis is simplified since in this case the functions aI and a2 in

(2.18) are equal to 1.

Remark 2.3. We can define the local analogue of the space HL(Q) defined in

(2.5). With , and 0 as in Theorem 2.3,

HL(O) = fu : u' e H1 (o') , a' au' 8u' H'(o,)}

with the norm

Hull 0 = Hull2 0 + u2 02

where

iul2,0 = , f -(a ai--  +.+a' 2U12+ a 2p12 )2d~d

In terms of the semi-norm lulL,0 , (2.13) can be stated as

lulLO S C(a,,, ,d)1 f10,0 -.
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Remark 2.4. Theorems 2.2 and 2.3 can be easily generalized to cover

coefficients a(x,y) of the form a (x)a2(y ) and alC()a2Cn), respectively,

and coefficients a(x,y) that are rough in x but smooth in y and a(g,n)

that are rough in C but smooth in n, respectively.

The method used in the proof of Theorem 2.3 gives a constant C which

behaves as d-2 , where d = dist(O,S); this type of estimate is sufficient to

treat problems of the type depicted in Figs. 1.1-1.3. To analyze the type of

problem depicted in Fig. 1.4 we will need a sharper estimate. Although

the complete study of these problems is reserved for a forthcoming paper, we

here present the relevant regularity result; we show, in fact, that the
as d -2

constant C behaves as d instead of d by using a more refined

analysis. Although the idea of the analysis is quite general, we will carry

out the analysis only on a simple model problem so as to focus on the

essential Idea.

Let £ = 11O = (0,1)x(O,1) be the square with the boundary all composed

of the four straight lines rI , I = 1,..., 4, shown in Figure 2.2.

Y

(0,1) F 3  (1,j)

14 F 2

(0,1) F1  (1,1) x

Fig. 2.2
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Let us further define

(0 1 1
H (Q) = fu e H (0) u = 0 on r 2 r 3 v r}

and, for 0 < d <1

= { (x,y) e0 d < y <1.

We assume that the coefficient a e L*CO) Is a function of x only and

satisfies

(2.32) 0 < a :5 a(x) 5 g < V x e (0,1).

Theorem 2.4. For f e L 2(M) and a e LOOMl) satisfying (2.32), let u e

(0)
H1(M) satisfy

(2.33) Ia(x)grad u grad v dxdy = fv dxdy V v e H 1(0).

Then there exists C = C~a,13), depending on a and 0 but independent of d,

such that

(2.34) l1Ul1 L,% Q C Ilo'n -d111,E

Proof. As in the proof of Theorem 2.2 we introduce the change of variables

(2.35) (x) = ds T, )

and the notation

(2.36) i( (X), j(y)) = w(x,y), (x,y) E 0.

For any function w In 0, wIs defined In ( 0,A)x(0,1) with A

doas7 A tilde means that we are In the domain 0
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Obviously for a function u satisfying our hypotheses, u, as defined by

(2.35) and (2.36), is in H (6) and

(2.37) C1 ( a.9) llull 1'a 5 liaill, s C2 (5 a,R)lIIu1 .

Furthermore u satisfies the differential equation

(2.38) 2 u 2( 2 = i( ), C,) 2 2-
a2 - 2

8x 8y

Here and in the remainder of this section we will interpret such equations in

the weak sense. Using (2.37) we see that (2.34) holds provided we prove

(2.39) 11Ul12,6d :5 C( I 1 10 + d- II 11a l 1 6)d

where C is independent of d.

The idea of the proof, similar to that of the proof of Theorem 2.3, is

to apply Bernstein's theorem to a times a cut-off function X chosen so

that X u e HQ1(6). But to get a sharper estimate, we first extract from u a

smooth function (, defined in (2.42)) having almost the values of u on r1I

This cannot be done in a simple way, since we only know u e H ().

The restrictions of a to the edge f is denoted by

w( ) = £( ,0), x E I = (O,A).

Since we know that

1/2

w e I) and Ilwtll/ 2 0 0 1 5 ClI 1 ,

1/2 -where 11.111/2,0,0,1 denotes the norm in the space H 0OO (cf. [141), we

can represent w in terms of its Fourier series,

W

w(x) = 2:a sin k
kA'

k=1

20



and the coefficients ak will have the property

k=l

We introduce the function

U

(2.41) 2:a) = Ya. sin k&/A shkx(1-j)/A
k sh kir/A

k=l1

which is the solution 
of

Ap =0 In 0

p on a8f

Then we write p - + ,, where

[d-1 ]

(2.42) a() = ' k sin ki&/A shk~(1-y)/A

k=1

and

(2.43) xk sin knx/A sh kn(l-y)/A
2. 3j e x~ ) ~ aK i zt / sh k /A

k=[d ]+1

and [d] is the integer part of d

(0)
Our method of proving (2.39) is to write u = X 1 + X2 ' where X e H1(C)

solves

-a _.. _ .(--a) = , in 6
(2.44) f a-2 a- 2

k I €on

and X H (() solves
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_a 2 2  ~ 2  X2 = 0 In

(2.45) f a -2  - a-2

.X[2 = 0 on r i ,

and to bound X1 'x 2 in the H2 (6d)-norm. The decomposition u = + X2  is

possible since u satisfies (2.38). First let us study X,' the solution of

1-
(2.44). We write X= +zl, where zE H0 (M) satisfies

(241_a2z,_-2a2z, a2 O+1 a 02 2 0# -o2 2y o2 02
(2.46) a8z 1  -2 F1 F2 7

xx 8

Now we bound the L -norm of F Using the explicit formula (2.42) for @,

the orthogonality properties of the functions sin k x coskw , and the

A'A

formula

1
2 ________ - A 21Tk 1sh2 k (1-) dy =- shA 41rk A 2'

we obtain

2 [d-ll

(2.47) 11 , <C [d a2k 3 ,
k=1

1 ds

where C depends on A = o but Is independent of d. Combining (2.40)

and (2.47) we have

I1°-1o - 5 Cd-11I1ZII,

In a similar way we get

(2.48) 1012, : Cd-I Ij iI, .

We also see that

(2.49) 11@Oi , < C l11 , .
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From (2.46) and (2.48) we get

(2.50) IIF l 0o, 5 C(d- 1 I111f2 + II0i'lo,)-

Using Theorem 2.1, we see from (2.46) that z I e H2 () and that

(2.51) i1z1 112 , S C(', ) FII 0o, .

Using (2.48) - (2.51) we see that X is in 112 (i) and satisfies

(2.52) IIX1112,Q 5 C(d- liilii', + I0 110,6).

Let us now consider X2P the solution of (2.45). Write 2 = 2 ,

where zE H () satisfies

2 2
a 2 z2 -2 a 2 z2 . 2? C2@

(2.53) -a - F8: -a2a-2 a-2 F - a a 2 '
aj2 a 8v 2 ay2

where F2 r H-I (). Since X2 does not satisfy homogeneous boundary

conditions, we cannot apply Theorem 2.1 immediately. Let X e C (O,1)

be a cut-off function satisfying

x(Y) = I for d < y < 1,

X( ) = 0 for 0 < < d

and

Ix (J) () S Cd j', y (0,I), j = 0,1,2.

The function X= c H 1(2) is the solution of3 2n0 d/2

(2.54) a2x3_ a2 ~.a2X3 =~ F I
ax 2  ay 2 3 4 d/2'

where (recall that x 2 =  +2)

23
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(2.55) F3  J -(X) -2 - -_

3 2  2

(2.56) F4 = 2 )- 2( )-a2-( )4 a 2( 2  ai 2 2
8x 8y

We will now bound F3  and F4  in the L2 (d2 )-norm. From the explicit

formula (2.43) for 0v we see that

11 212 <' 2k3 e-wkd/Aa 21 °0 d/2 k

Taking into account (2.40) and t!e fact that

k2 e-knd/A 5 Cd 2 e-w/A V k [d-1 ] +1I...

we obtain

2(2.57) 11 -0-I ~ _ d II 1 , .

a2 O,d/2

Analogously we get

(2.58) -2 01 : 2 H 1 U- '
8y 'd/2

ax ay

and

(2.60) 10110, -d 2 CdllII1,

d/2

with C independent of d. Using (2.55), (2.57)-(2.6C), and the hypotheses

on X, we get

(2.61) 11 F3 Ii0 , 5 d/2 Cd ii

Let us now study F From (2.56), (2.45), and the decomposition
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2 = I#+z2, we see that F4 can be written as

a2-2 -a2 -21 -(2
(2.62) F4 = X(2 + 2-a@ - (2x' (y) z+ X"(y)z2

8x 8y 8y

Because z2 = 0 on 8C2, in particular in rl' the Poincar6 inequality

asserts that

(2.63) z ( ,)1 2dd < Iz11 2

As a consequence of (2.53) and (2.59) we have

(2.64) 11 z 2 11 -5 Cllu 1 t,6

Now from (2.62), (2.57), (2.58), (2.63), and (2.64) we obtain

(2.65) U1 F411 0,6d/2 <  Cd- 1 11 U-t 1, ?"

Theorem 2.1 can now be applied to X3 P the solution of problem (2.54),

with F 3+F 4 e L2 (d/2) bounded by (2.61) and (2.65), and we obtain

(2.66) IX2 112 , d 
< 11 X3 112 , 6d/2 Cd 1 l

Finally from u = +X2' (2.52), and (2.66) we get (2.39), which implies

(2.34). u
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3. Special Methods for Problems with Straight Line Unidirectional Coefficients

In this section we propose and analyze methods based on special elements

to solve the model problem

Lu(x,y) S - (a(x) -iu(x,y))- (a(x) a--U(x, y)) = (x,y) V (x,y) e £

.u(x,y) = 0 V (x,y) E 8M,

where 0 = £0 = (0,1)x(O,1), f e L2 (0), and a e L*(£) is a function of x

only and satisfies (1.2). This is problem (1.1) with a(x,y) a straight line

unidirectional coefficient. We will present three approximation methods,

prove they have the optimal rate of convergence, and discuss their merits.

3.1. Approximation Method I.

For 0 < h : 1, let Vh be a triangulation of £ by (closed)

curvilinear triangles T of diameter : h, where by a curvilinear triangle

T c Q we mean the pre-image of an ordinary triangle T c 6 under the mapping

(2.7). Corresponding to Vh we have a triangulation 1h of 5 by usual

triangles. We assume that { h} O<hl satisfies a minimal angle condition,

(3.2) h.-/p- a- V 0h < h 5 1,

2
where for any bounded set S c R

(3.3) hS = diameter of S

and

(3.4) PS = diameter of the largest disk contained in S.

With 'h we associate the space of approximating (or shape) functions

2 dt
(3.5) Sh = {v e L2(£) vT E span{ 1, a----,y} V T e h'

v is continuous at the nodes of Vh'

v = 0 at the boundary nodes}.
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As a consequence of our choice for the curvilinear triangles T we see that

S c H 1(Q), i.e., S is conforming. This is easily seen by noting that the
h 0 h

functions , tT ,y are transformed to i,x,y by (2.7). Consequently

Sh {V v e Sh} (h is defined in (2.8)), the image of Sh  under the

mapping (2.7), is the usual space of continuous piecewise linear approximating

functions with respect to 1h' and Sh  is conforming since Sh is.

Our finite element approximation uh to u is now defined by

(3.6)
{B(Uh,) = {fv dxdy V v e Sh ,

where B is defined in (1.3). uh  is just the Ritz approximation to u

determined by the variational formulation (1.3), in the case (3.1), and the

space S defined in (3.5). Since it is easily seen that uh is the RitzSh

approximation to u determined by the variational formulation (2.9) and by

the space Sh' we could, of course, carry out the computation and the analysis

on the transformed domain 6. We shall however study the approximation on the

original domain Q since this approach better illuminates the more general

case of a curvilinear unidirectional coefficient studied in Section 4.

immediate that B Is a bounded bilnear form on H1()xH1 1(Q).It isimeitthtBiabonebiierfronH()xC.
0 0

Furthermore, the stability condition (cf. [1]) holds, i.e., we have

Theorem 3.1. There exists a constant S(W) > 0, independent of h, such that

for all 0 < h 5 1,

(3.7) inf sup IB(v,w)I 2t 3(a).
veSh wESh

11V I 11wl1 ,C1 = 
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Proof. Since B(v,w) is symmetric It is sufficient to prove that B is

coercive, i.e., that

IB(v,v)i 2:( vO R 2 Vv e S 0 < h 5 1.

This is immediate.

Approximability here involves the approximation of the solution u by a

dt
linear combination of the shape functions 1, --- ,Y in terms of whichS

is defined. Let the points PlP 2,P3 e 12 be the vertices of T and let

PloP2, P3 be the vertices of T (cf. Fig. 3.1). Since the functions

dt
1 'J t,,y are transformed to 1,,y by (2.7), we see that the inter-

polation problem: Given numbers wl,w 2 ,w3 , find

(3.8) w(x,y) =

satisfying w(P I ) = i = 1,2,3, is uniquely solvable.

Y~
y

(0,j) (1j1) (0,1) 0aW'

P3  P3

TT

pP 2 A
P II

(0)0) (1,0) X (0,0) (YC)i )0

Fig. 3.1

Suppose u e H LT). Then u E H2CT), and hence u has well defined point

values for any P e T. Thus u has well defined point values for any P e T,
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0dt

and we define the span{l, -t of u on T by

r a dt )itrpln ofuo)Lb

dTu = a+ f -- +-+y, dTu(P1 ) = u(PI)•

We derive now an estimate for the difference u-d Tu.

Theorem 3.2. There is a constant C = C(a,P), depending on a,f but

independent of T and u, such that

(3.9) [u-dTu , < C-r lulL V u e HL(T),
T1, T P L, T

where hff,pt are defined in (3.3), (3.4).

Proof. Using the transformation (2.7), we have

(3.10) Iu-dTulT = ~Tigrad(u-du)1 2dxdy 1 J dta). 12 2
T IT a ax

+jax 3 1 -d1)2 dxdy

0C ta( , -  1,T'

where d-u Is the span{1,x,y}-interpolant of a In the triangle T

Applying the usual linear interpolation theorem (cf. [7, p. 121]), we get

the bound

(3.11) Iu-dtul 1, < C- 11,

where C Is an absolute constant. Inequality (3.9) is a consequence of

(3.10), (3.11), and the definition of the semi-norm 1'L,T' with the

1 1/2constant C(max(g,-))
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We define now the Sh-interpolant of u E HL(2 ) by

(3.12)
dhu(P) = u(P) for all nodes P e Ch"

As an easy corollary of Theorem 3.2, we can state our approximability result.

Theorem 3.3. There is a constant C = C(aRv), depending on a,f, and (r

but independent of u and h, such that

(3.13) 1u-d hulli 5 ChlIuL,Ql V u e HL(Q), 0 < h < 1.

Proof. Since the function u-dhu is In H1 ((), from the Poincare
h 0

inequality we have

(3.14) llu-dhUll2  < C(M) Zlu-dTulT2

Combining (3.9), (3.12), and (3.14) we get

4
(3.15) lju-dhUll 2  s C Z 2 <C max 2 lul2

h --p2 mL,T -hi ,n2 Iuh LT TEgh

TeC h

It follows immediately from the definition of the mapping (2.7) that

(3.16) m ) max(1,1)h VT E

Finally, estimate (3.13) follows directly from (3.15) and (3.16). a

As a consequence of the stability, approximability, and regularity

results, we obtain an estimate for the error u-u h  in the H 1 ()-norm.

Theorem 3.4. For f e L2 (12) let u be the solution to (3.1) and let u be

the solution to (3.6), with Sh defined in (3.5). Then there is a constant
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C = C(a,3,o-), depending on ag, and o but independent

of f and h, such that

(3.17) 11u-uh1l, :55 Ch11f1I 0 , , 0 < h : 1.

Proof. It follows from Theorem 3.1 and standard results on the approximation

of problems in variational form that

(3.18) !u-Iuh{{1,g -5 C Inf I{u-XI 1 , f.
ZESh

1

Combining (2.6), (3.13), and (3.18), and the fact that u e H 1() implies
0

dU S we have

11{u- uh{{ 1, n  _< Ch~l f11o, n ,

where C = C(ago-). U

Theorem 3.4 shows that the method defined by (3.6) Is accurate and robust

for the approximation of (3.1), i.e., the convergence is of first order in the

mesh parameter h with a constant depending on a and g, but otherwise

independent of the coefficient a(x). Thus the method has the same accuracy

0as the usual finite element method based on CO , piecewise linear

approximating functions for smooth problems.

Remark 3. 1 Approximation Method I, as we have presented it, is based on a

triangular mesh. One can also consider rectangular meshes. Thus for

0 < h S 1, let 1h be a partition of il by rectangles R of diameter <h

and suppose { hI0<h~ l satisfies a "minimal angle condition" ((diam R/diam of

largest disk contained In R) 5 o-VR e 1h and V 0 < h - 1). With 1h we

associate the approximating functions

h = {V e C 0(5): VIR e span1 -, y, y Lt VR e I

v = 0 on O}
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The finite element approximation uh  is defined by (3.6) with this

choice for S Then it is easily seen that the arguments used to prove

Theorem 3.4 yield

(3.17') 1lu - uhl1l, n S C(a,P,a)h flfjjo O ,

the same estimate proved for triangular meshes.

Remark 3.2. Method I has an obvious one dimensional version. This one

dimensional method differs from the standard finite element method based on

C , plecewise linear approximating functions in that the coefficient a(x)

enters the finite element calculations via its element-by-element harmonic

averages instead of via its averages. It is referred to as a generalized

displacement method (cf. [41). In the methods presented in this paper, the

coefficient a(x,y) enters the calculations via various element-by-element

harmonic averages and averages, i.e., via various element-by-element moments

of l/a(x,y) and a(x,y).

3.2. Approximation Method II.

In Method I we chose shape functions that closely approximated the

unknown solution. We then used the same functions for test functions, and the

stability condition was immediate. In order to ensure our methods were

conforming, we used curvilinear triangles. In this subsection, we discuss a

second method, employing the triangulation by ordinary triangles shown in

Fig. 3.2, the trial functions used in Method I, and C piecewise linear test

functions. Now the trial space will be non-conforming, but the test space

will be conforming.

1For h = -, n = 2,3,..., let 1h be the uniform triangulation of 11,
n h

with nodes (xiyj) = (ih,jh), i,j = 0,...,n, shown in Fig. 3.2.
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A

Y2
Yn=1 , /  /  -0

-7---

xo x1 Xn= 1  X

Fig. 3.2

For use In our ar- I] is, we introduce the mesh dependent spaces

(3.19) 1 (Q) = {u e L2  H H1 (T) V T e 1h}

with the norms

Hull2 = U2 dxdy+ lul 2
1 h 1, h

(3.20)

= JOU2 dxdy+ 2: TIgrad u12 dxdy.
TE~ T

T4'h

It is clear that these spaces are Hilbert spaces.

1 1We define the bilinear form Bh on H(Q)×Ho0(0) by

(3.21) Bh(uv) = f J a grad u • grad v dxdy.

Teh

Clearly Bh  is bounded on H%(fl)xHo(0l), with a bound that Is independent of

h. Moreover, B (u,v) = B(u,v) V u,v e H 1C(). Now we define the trial space
h 0
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S1, h and the test space S2,h

(3.22) S cc=~( LCQ 2 ~ spanfl, drt'~ V T e

v is continuous at the nodes of 'h'

v = 0 at the boundary nodes}

and

(3.23) S2,h = {v C C O() : VIT e span{l,x,yl, V! 8 0 = 0

We remark that S t In general, so $S,h is non-conforming as

mentioned above.

Our finite element approximation Uh to u is then defined by

(3.24) I V
S 1 S

Bh(Uh v ) =1.fv dx V v e $2,h.

Note that the space Hh(W) is not well suited for a weak formulation of the

exact problem (3.1). Nevertheless, the error analysis of (3.24) can be

carried out in the usual way. Let us suppose that a stability condition holds

for (3.24), i.e., there exists 6 = 8(a,P) such that

(3.25) in! sup B h(uv)l a t5(a,1) > 0 V 0 < h : 1.

UeSl,h veS2,h

IUIlu,h=l 11v111,Q=1

Since dim S1,h = dim $2,h' (3.25) implies that (3.24) is uniquely solvable.

For any u e H((, we can define Phu by

(3.h
u  S ,h

.Bh(PhUV) = B h(uv) V v e S2,h .

It Is clear that Ph Is a projection onto S ,h . This projection Is

uniformly bounded In h; in fact by (3.25) and (3.26) we have
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SPhUl1, h < S (cc, )1 sup IBh(Phu, v) I C(c,{3)11ul{1, h  V U e
vES2 , h

1lvIl 1,a=1

For u the solution of (3.1) and uh the solution of (3.24) we have for any

X E Slh,

1u-uhIl, h = 1u- PhU"1, h = f(u-X)-Ph(U-X)11,h < [ +C(,3 )]Iu- I1,h.

Thus we have proved there exists a constant C = C(a,g) such that

(3.27) I1u-uhi11,h S C Inf Iju-xi1lh
ES1, h

(cf. [1]).

We show now that the stability condition (3.25) holds.

Theorem 3.5. There is a positive constant 3 = 6(a,g) such that

(3.28) inf sup IBh(u,v)I > 6(a,g) V 0 < h < 1.
ues1,h veS2,h

Iu11, h=l {Iv{1, 10 =1

Proof. Let ah : (0,1)--.R denote the plecewise harmonic average of a(x),

i.e., let

(3.29) a hI = h-f }
where I = (Xi- x ). For any u e S1,h' let v E S2,h  be defined by

v(P) = u(P) for all nodes P of Vh'

We will verify now the relations:

ft av au av

(3.30) a -- = h x ,  ay =5y "
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Let us first consider a triangle T of the type shown In Fig. 3.3.

T

(xi1 1, y3 1)

x

Fig. 3.3

On T we have

v(X,Y) = u(x 1 1 , YJ..1){ Y }+ Ux ly){ YY 11) (XX1)}

+u(x.,y) X-Xj -1
ij h

and r dt
a~t)

u(x,y) UNi=Y- uUx1  1-1 - 1  }
r dt

aa (t
x 1 1-1

h ~dt ~

rx a
36~



On the triangles of the type shown In Fig. 3.4 the proof follows the same

yi

(Xi, Yj)

T

(xi_1, Yj_) (x, yj_1)

x

Fig. 3.4

lines. So the relations (3.30) are proved. Now using (3.30) and the Poincar6

Inequality we have

(3.31) Bh(u,v) = Y- f +a - dxdy

TEI hTTh

> Igrad v[2 dxdy = o Iv 1 2  > allvII .

TE% JTh

To complete the proof we still have to bound [IvI 1 n from below in terms of

H UlIl ,h. Using the relation (3.30) we obtain

(3.32) 1Ulh = f+ avxdY [2  2
1, TVh Tf 'a y-ri 1,0l

h

On the kind of triangles T shown in Fig. 3.3 we have

37



2 u×_,j : 4,1 Y x-11-xd
(3.33) JT Iul dxdy = [T Iu(x i1 '1~..)1Y

dt 
dt

+ U(x r --- XiI +u(xj#Y ) i-I_ 1I dxdy
1-1 idt I Idt

X-1  1-1

F3 IT}UIlYj_1)12+ 1U(X lY )12 + lu(xi,Y )12}dxdy

3- (u(x_ 1 ,y_1 )M
2+ Iu(xi M,)2+ IU(xy ) 2

5 C I Ivl2dxdy

r

On triangles of the type shown in Fig. 3.4 we have the same estimates.

Inequalities (3.32) and (3.33) show that

(3.34) lull 1,h : C+ [l]2}I/2 11VII

From (3.31) and (3.34) it follows immediately that (3.28) holds with 8 =

(X 2 1/2
2 + 1'iJ

For u HL(Q), let dhu be the Sl,h-interpolant of u, i.e., let

dhu be defined by

(3.35)
tdhu(P) = u(P) V nodes P of h;

dhu is well defined since u is well-defined on the nodes and since the

images of the vertices of any T e Vh are noncolinear. In the next theorem

we derive an estimate for the interpolation error ju-dhu1lh.
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Theorem 3.6. There is a constant C = C(a,f), depending only on a and 0

but independent of u and h, such that

(3.36) Iju-dhuI1lh ChlulL, V u E HL(n), 0 < h 5 1.

Proof. This proof is similar to that of Theorem 3.3. Let u e HL(r2 ), T e Vh'

and RT be the smallest rectangle containing T. Let T,R. be the images of

T,R under the mapping (2.7). Then, applying the usual linear interpolation

theorem as in (3.11), we have

(3.37) -ul C T< I = 10,1.

To obtain the result in the original variables we note that

(3.38) 2 -dhUl2 1 dxdy 2 1 lU-dhUl2
h xdy= h a hu ORT

and (cf. (3.10))

(3.39) U-dhu 1 2 min( .1/1) lU-dhUl2
h , RT  h1, RT"

By the definition (2.5b) of the semi-norm I.LRT, we have

(3.40) ,I2, T I UlL, RT.

With (3.38) - (3.40), inequality (3.37) yields
2

(3.41) lu-dhuli,T : C(X ,0) 4 lUlLR i = 0,1.

AT
From (2.7) we have

(3.42) hRT - max(/ i, )hRT, PAT -> min(1,1/g) RT

Finally, (3.36) is a consequence of (3.41) and (3.42).
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As a consequence of (3.27), (3.28), (3.36), and (2.6) we obtain

2Theorem 3.7. For f e L (Q), let u be the solution to (3.1) and let uh

be the solution to (3.24). Then there is a constant C = C(a,g) such that

(3.43) Iu - Uh"1, h  
<5 Chllflon .

Remark 3.3. In Remark 3.1 we briefly outlined Method I for rectangular

meshes. Here we give a rectangular mesh version of Method II. Let0 0 }5 1h {v 4 C0 ~(5) : vR span {, f , d , y dt R E h

v =0 on 8a }

and

S2 h = {v4 C0C ) vIR e span {1, x, y, xy R E 1h ' v = 0 on an}.

Our finite element approximation uh is now defined by (3.24) with this

choice for S ,h and S 2,h . In this situation we need a hypothesis on a(x)

In order to ensure stability. Let

Xi~la x-xi_ 1

(x) - and i - h

a
x1-1

and then let

A, = h 1 i a dx,
xi-1

B, = h-I i a dx,
xl-1
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Ci h-1 Ox i a adx,

xi-

and

Di = h-[ ui adx.
i-1

We assume

4A Ci - (Bi +Di)
A IC (> > 0, Vi,h.4C

1I

Then (3.28) holds with 3 = S(a,g,v) > 0. We therefore obtain

(3.43') 11[u - Uh111, n  -< C (oc, , -) h }f 11 , n .

We remark that S1, h  is conforming in this rectangular mesh case in contrast

with the triangular mesh case in which S1, h  is nonconforming.

3.3. Approximation Method III.

In Method I we introduced curvilinear triangles in order to ensure the

approximating functions were conforming, while in Method II we used a special

triangulation with ordinary triangles obtaining a nonconforming method. In

this section we design a conforming method based on an arbitrary triangula-

tion with ordinary triangles.

For 0 < h _< 1, let V h be a triangulation of 12 by ordinary triangles

of diameter 5 h and suppose {Mh} O<hl satisfies

(3.44) h o- V T e , V h (minimal angle condition)

and

(3.45) :5 V T e V V h (quasi-uniform condition).
hT

where hTPT have been defined in (3.3), (3.4). Let Pl ...,P Mh be the
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nodes of Vh' The function denotes the usual piecewise linear basis

function associated with the node P = (xjyj), J = 1,....m h , i.e.,

is piecewise linear with respect to 0h

ij(Pi) = ij;

we remark that
mh

0j= 1.

Y] 1J=1

For each j E {1,... ,mh } let

V = span{Oj(xY),Oj(x'Y) - t' 0j(XY)(Y-Y)}.

xji

For the space of approximating functions we choose

mh

(3.46) Sh = {v : 9-->R : , = vj e Vj, v = 0 on 2}.
J=Jj=i

Our finite element approximation uh to u is now defined by

(3.47) . fddYSh

.LB~uhv)= v xyVveSh

uh  is the Ritz approximation to u determined by the variational formulation

(1.3) and by the space Sh defined in (3.46). To study the convergence of

the approximation (3.47), we turn our attention to an approximation result for

Sh )O<h5
1'

First we show that we can approximate u e HL(M) by a linear

combination of 1, a(t' y - YJ on S where for j = 1,....mh, Sj is

J

the finite element star associated with the node P
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S j= U T.
TEh

PTeTCPj eT

Let R be the smallest rectangle with sides parallel to the axes containing

S and let J be three specific vertices of R including all vertices

that lie on ai. For any u e HL(R ) we define the span{l, f -idt7, y -

interpolant of u associated with Pj by

(3.48) dJhU = + f a+t+ (Y- yj), (dj, hU(P) = u(P) V P E J.
Jx

We will prove the following approximability result.

Theorem 3.8. There is a constant C = C(,g) such that

2

(3.49) u-dju S C(ar0) !k UL, , Vi = 0,1, 1.j~ 'S PRIL] -V " j "''h
u E HL(Q).

Proof. Let j e i....m h  and u e HL(Q) be given. With the node P. we

associate the finite element star S and the rectangle R Y S and R

are the images under the mapping (2.7) of S and R Clearly R. is also
a rectangle. It follows from (2.7) and (3.48) that djh u is the

span{l,x,y}-interpolant of u, i.e., dj hu E span{lxy} and d. U(P) =

u(P)V P r J Thus

h2~

(3.50) u -dj hU Cuh-Jlui 2 , i = 10,1.

'3 PAJ

Returning to the original variables in (3.50) (cf. (3.38) - (3.40)), we obtain

43



2

(3.51) 1u - dhulR : C ((X, s ) lul I = 0,1.(3.l u- jh h~I,R I- L, Rj'

p PAj

As in (3.42) we have

(3.52) hAJ 5 max(! 1)hR, pA min(l1a, Phj P ')PRj"

Finally, (3.49) is a consequence of (3.51) and (3.52).

Before stating an approximation result for {S h}0<h 1 , we prove a

technical result.

Lemma 3. 1. Let { h} O<hl be a family of triangulations satisfying the

minimal angle condition (3.44). Let P1 .... PMh denote the nodes of 9h and

let S be the finite element star associated with P Then we can

partition the set {PI .... Pm} of nodes into a finite number of disjoint

sets I1 .... I with t depending on a but independent of h, such that

PiPpeI k* I * i j, implies 9i n 9j = 0 (9i denotes the interior of SI).

Proof. The proof is simple; in fact, we give an algorithm to construct the

partition. We assimilate the triangulation to a graph, the edges being arcs.

Because of the minimal angle condition, a node P has a limited number of

arcs PiPiko Qi = (Pi : k = 1.... , I} being the neighbors of Pi, with

Ti : y, where y depends on a but is independent of I and h. We now

state the algorithm. To construct I1  we do the following. First take P1

in I ; then take the node of smallest index s in (PI .P.. PMh}\ ({P } 

Q1), to ensure 9I n 9s = o, and so on until the set {P1 .... VPmh}\({Pi} I

Q u {P} vs u ...) is empty. To construct 12 we do the same as before

with the subgraph of nodes {PI .... P mh}\I From the minimal angle condition

and the construction of Il, a node of this subgraph will have at most 7-I
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arcs. In this way we construct 1 ... . The algorithm will stop after at

most I steps..

Theorem 3.9. There Is a constant C = C(a,3,v,o), depending on SVu-

but independent of u and h, such that
mh

(3.53) Iu -1 d jhui 5 Chlul V u e HL (), 0 < h I.

J=l

Proof. Let u e HLC() and let Ill ... PIt be the partition of the nodes of

1h given in Lemma 3.1. Then, since supp 0 j = Sj, we have

mh Mh

(3.54) lu--7i d ju1 2 1 E (u-d U)12

J=l j=l

=Z Z @J(u-dJhU)I 2

k=l JEIk

t

-< tz ' I (u-d hU) 2, ,

k=1 J ik

= tZ. [ grad(¢J(u-dJ hU)), 2 dxdy

t1 jE k

tj I ~ Z grd( 1(- jhh 2dd

I(grad @)(u-djh u) +i grad(u-dj~hu) 2 dxdy
k=l j4EIk

Mh

S 2tZ M {grad Oj)(u-djhu)I12+ 10j grad(u-d J,hU)l 2}dxdy.
J=l S

We note that with the assumptions (3.44), (3.45), we have the bounds
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1 and Ia 5 1 MI 1 d Igrad mn T < min hT- h

PjeT PjeT

Thus from (3.54) we get

(3.55) Iu- d 2t 1 2u - u 2dxdy

mJ=p fi Iu1dahZ dxdT
J=1 ImiPT

+1 I rad(u -d j u)I 2dxdy}

We now use Theorem 3.8 in (3.55) to get

mh mh - 4 4

(3.56) lu- . d u l 2,dj h,, h<  " 2

J=lJ l pmInTPT PR.j
J=1 Pj eT

With the assumptions (3.44) and (3.45), the following estimates are obvious:

hR 2 max hT < 2h, PRj min PT a min -T > h

PjeT PjeT PjeT

So the inequality (3.56) becomes

mh mh

(3.57) lu- 0JdJhul2,Q < C(cx, ,o-,u)h 2 Z u 2
z ii~h1 QL, R j

j=1 j=1

Mh 2
It remains to estimate h IuILRj* We have

j=1

mh
(3.58) lul, j :5 N lU 2

2: L - L, T'

J= TElh

where

NT = The number of rectangles R such that T n Rj 0.
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Let us now show that under the assumptions (3.44) and (3 45) the numbers NT

can be bounded independently of h for all T e 0h' Let T e 'h be given.

If T n R * o, then Pj lies within the (closed) disk D of radius

(Vr+l)h centered at the center of T. To estimate the number of nodes lying

inside D, we first estimate the number N of triangles K that lie inside

the disk D' of radius (v'f+2)h. Since from (3.44), (3.45) we get

2 2 2
nh < R h I S N E < area(K),

4 22 42 4

we have the estimate

h 2  < Z area(K) S area(D') = (2+V)2h2

KcD'

and hence

2 22 2
N< 4P o- (2+Vf)

So for NT  we have the bound

(3.59) N T <5 12v 2 '2(2+v'2) 2 V T e C ho 0 < h S 1.(3.59)Niua 2 (+ ) 2 T 0h .

Finally combining (3.57)-(3.59) we get

mh

(3.60) lu- 0jdJhull S Ch 2jlul 2

j=i

where C depends on a,g,P,o- but not on u nor on h. Inequality (3.53)

follows from (3.60). a

As with the Approximation Method I, the stability condition is Immediate

(cf. Theorem 3.1). In the same way we proved Theorem 3.4, we can prove

Theorem 3.10. For f e L 2(fl), let u be the solution to (3.1) and let uh

be the solution to (3.47). Then there is a constant C = C(aPPor) such
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that

(3.61) IU-UhllliU : Chllflo 0 1.

Note that in the proof of Theorem 3.10 we use the fact that u e Hi(0)
0

mh
1

Implies u e H6(0). This is true because J contains any vertices

j=1

of R that lie on 80.

3.4 Comments on Methods I. II, Ill

We have described three methods for approximating the solutions of

problems of the type depicted in Fig. 1.1. The usual finite element method

is inaccurate for these problems since the solutions may not be in H+C (D)

for any c > 0.

Methods I and II are closely related. The central idea in these methods

is to exploit the existence of a mapping from the general element to the

reference element that transforms the special shape functions into polynomials

and the unknown solution into a smooth function, and thereby obtain a good

convergence rate. For singular corner behavior and homogeneous material, this

idea is exploited in [5].

It is advantageous to use rectangular meshes in C that are aligned with

the direction of the unidirectional composite, as described by a(x,y),

because they are the images of rectangular meshes on 6. The major difference

between Methods I and II is in their treatment of the right hand side f.

Since with Method II, f enters the computation through integrals of f times

the usual piecewise linear test functions (as opposed to integrals of f

times the special test functions (cf. (3.5)), Method II is preferable when

many right hand sides must be treated. On the other hand, Method II is less

stable than Method I, leading to larger constants in the error estimates (cf.
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(3.17), (3.17'), (3.43), (3.43')). In fact, for quadrilateral meshes Method

II may not converge for some a's; see the hypothesis on a(x) in Remark 3.3.

We note that for triangular meshes Method II always converges.

Method III, although similar in its use of good local approximating

functions, (e.g., functions satisfying the differential equation) has a

rather different character than Methods I and II. In Method III the alignment

of the mesh does not play a role. Finite element approximating spaces based

on shape functions satisfying the differential equation have been suggested

and employed in various contexts. The main problem in their use is the

enforcement of some type of conformity. This can be done by various hybrid

methods, e.g. (see [21, [121, e.g.). These are, however, problems in ensuring

the stability of these methods, and some of these problems have not been

satisfactorily resolved. In contrast, Method III proposed here has no

problems of this type, and is very accurate and robust. For some

computational aspects of a similar method employing harmonic polynomials in a

p-version fashion and applied to the solution of Laplace's equation see [151.
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4. Methods for Problems with Curvilinear Unidirectional Coefficients

The methods presented in Section 3 cover problems on rrctLnguaLj- domains

with coefficients that globally vary sharply in at most one direction, i.e.,

that are straight line unidirectional. Here we extend Methndr; I and III to

cover coefficients that locally vary sharply in at most one direction, i.e.,

that are curvilinear unidirectional, and to cover domains with curved

boundaries. Method I', the extension of Method I, will be based on quadri-

lateral and triangular elements and Method III', the extension of Method III,

will be based on triangular elements.

4.1. Method I'

Consider the boundary value problem (1.1) and suppose

• for 1 1 i: n', (fi, i) is an open subset of S1 and a

coordinate system satisfying conditions (I)-(vi) in Section 2 and for

n' + 1 : i n, where n' 5 n, ) is an open subset of Q

and a coordinate system satisfying conditions (i)-(iii), (v), (vi) in

Section 2, i.e., = = ixy), Q = ni = mi(x y) and if (x,y)

ranges over %, then ( iI) ranges over Qi = (xI 1, 2 ) X (7),I

22 ), where Oil (Xixy), 7i1 (xy) satisfy conditions (i)-(iv), (vi)

if i 5 n' and conditions (i)-(iii), (vi) if i 2 n' + 1 (let E.1

denote the union of the interior edges of Qi);

{ f ~In covers 0 in the sense that

(4.1) n =ULP 0

and

(4.2) an = U flInterior (l n 80) in a};
i=1 I

" for 1 5 5 n', we have

(4.3) a(x,y) = a(xi( ,I), yI(9,n)) = aI(g) V (x,y) e Ol
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where x = xi(,-), y = yi(g,n) is the inverse of the mapping

9i(xy), 7i(xy) (ai here plays the role of a' in (2.12)), and

for n' + 1 5 I 5 n, a(x,y) is smooth on 0i"

With j(01ii)}l= 1  satisfying these assumptions, for each i let 01

be the result of pulling each Interior edge of £i (cf. condition (vi) of
ip

Section 2) a distance d towards the center of 1i " Then the 0i s are open

sets of the type considered in Theorem 2.3 (i.e., 0. c o., 0. cc Q . if1 1 1 1

. a 8Q = o and aO. n au. c an if . ao # o) and {0 }n = satisfies1 1 1 1 i I=1

(4.1)-(4.2), provided d is sufficiently small. Note that d = dist(O.,E.).i1

We consider d to be fixed.

We note that If (1.1) corresponds to problems of the type depicted in

Figs. 1.1-1.3 or to a smooth interface problem modeled as a composite

material, then 7 n can be chosen to satisfy the conditions

outlined above.

We note that these assumptions imply that a a is a piecewise smooth

(C 2 ) curve with vertices with angular measure a satisfying 0 < a < n; in

particular £, has no reentrant vertices.

Remark 4.1. If our proclem satisfies these assumptions we say that a(x,y)

locally varies sharply in at most one direction. Such coefficients are, as

indicated earlier, also called (curvilinear) unidirectional.

With £, £2 ..... I n , 01.....0 n , n', and a(x,y) satisfying the hypothesis

described above, we now describe the meshes we will employ. For 0 < h 5 1,

let 'h = T} be a mesh on Q consisting of curvilinear (closed) quadri-

laterals or triangles, and satisfying he following properties:

" Each T is contained in some 01 : T c I(T' 1(T) 5 n;

" If M(T) 5 n', then T Is the image of a rectangle T' in £2'
1(T)
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under the mapping x = XI(T) = xCT)( ) = i(T) = Yi(T) (M4 )

i.e.,

T = {(x,y) x = xi(T)(Mn)' Y = Yi(T)(g,7),

71)1 n n 1 1 2 _2
01( ) TT II(T)' 0I(T) TT - C21(T)

where

(44)2 1 2 _1(4.4a) I T  CT 1 h, I1T - 1:l h,

C2 -C1
(4.4b) -1 T_ T_ <

2 1

where I 5 a < w is Independent of the mesh. The mapping ( i(T)'

= 1 2 1 2
i(T) ) maps T onto T' = (CT, CTx iT , nT) ad T' is mapped

onto the reference rectangle T = (0,1) x (0,1) by the mapping
r

ft dt JT d1
(4.5) T ) III T) Il i(T -T

= i(T) 2 2 =I(T) = 2 1
2 dt T -QT

ai(T) {1 aI(T)

0 0

Thus the composition of these two mappings maps T onto T = Tr0
r

and the inverse, FT. of the composition maps T onto T.

If (T) 2 n' + 1, then T is the Image of

T T r if T is a quadrilateral

T = a reference triangle, if T is a triangle
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under a mapping FT satisfying

F is invertible, and F and FTI are smooth,T T T

(4.6) IFTil,,TO : Ch, IFT12,w, To - Ch2 -FTI'1,w,T : Ch- 1,

and

(4 7 )JFTIO, ,To U sup'JFT(,)I Ch2,IJF T * sup IJF -1(x,y) Ch-2 ,
(Q,j)eT0  (x,Y),ET  T

where

IGIeQ = sup IID'G(t,s)II1 (R2 , R2)'
(t,s)EQ t

JIDt G(ts)II 2R 2 R2 ) = max IlDtG(ts) Td 11

I R2
IIIItll~

1111 = the Euclidean vector norm on R2

and

J G(ts) = Jacobian of G at (t,s).

The constant C in these estimates is independent of the mesh. We

easily see that the mapping FT : T --T defined above for I(T) S

n' satisfies parallel assumptions. Hence we have T = FT (TO) for

all T, and it is convenient to associate the mesh 1 = {T} with the

set of mappings {F T}.

The standard compatibility condition Is satisfied. Suppose that TI

and T2 are quadrilaterals with a common edge f : t = T1 2T"

See Fig. 4.1; note that we are using two copies of the reference

0
rectangle T
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4 Ti 

(0 x (,1 (2,1)

x (0,0) (1,0' 20

Fig. 4.1

Assuming that t is the Image of the vertical line segment {( ,i)

= 1,0 -, 1} under both F and F , we require that

(4.8) FT C(ii ) = FT2(1i ) ,0 : 1 : 1.

If t is the image under FT2 of a different edge of the reference

rectangle, we would modify (4.8) in an obvious manner. Also, if

either T or T2  Is a triangle, the compatibility condition would

be modified in an obvious way.

We point out that our mesh matches the (curved) boundary of 0 by means

of blending (non-isoparametric) elements.

Remark 4.2. In the quadrilateral element case, verification of (4.6) and

(4.7) usually proceeds along the following lines. Let T* denote the

straight line quadrilateral with vertices a1 ,i = 1,2,3,4, coinciding with

54



those of T (see Fig. 4.2), let

hT = diam T*,

PT = diam of largest disk contained in T*,

7T =  max {Icos{(a i+ -a ) • (a i- a i)} 1 i< 4 (mod 4)}

y
a3

A A
a4 a 3

a2a4  FT

xA A

1 a a2

Fig. 4.2

and assume

hT
hT h < ', TT h< - < 1,

where a and y are independent of the mesh. Let FT denote the bilinear
*

mapping of T0  onto T and write

FT T

One then makes assumptions on the perturbation 0 that imply (4.6) and (4.7)

are satisfied. This procedure is outlined for Isoparametric quadrilateral

elements in [7, Exercise 4.3.9]. The parallel procedure for triangular

isoparametric finite elements is carried out in [7, Theorem 4.3.3].
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It remains to describe our shape functions. On T e 1h we use the shape

functions

(4.9) 1, F I (x,Y), F (x,y) F-  (x,y) F - T (x,y) if T is
F TI xy) T,2(x ' TiT2 '

a quadrilateral

and

(4.9') 1, F- 1 .F1(x,y), if T is a triangle,
-T, T,2

where F1 (x,y) = (FT (x,y), Fi- 1 (x,y)), I.e., we use the pull-back poly-
T T,1

nomials determined by the bilinear shape functions 1, I, , in the quad-

rilateral case and by the linear shape functions 1, , in the triangular

case. For I(T) :_ n' we easIly see that the functions in (4.9) are

I(T) dt 1 { dt

J aI(T) (xy) - 1 ai(T)
(4.10) 1, T i(T) 1 T i(T) TY) T

.Tt 2 1 2 1
dt T T dt

1 1(T) 1 ai T)

Then we let

(4.11)h = {v e L2 (2) : v e span of the shape functions on T,
T

v is continuous at the nodes of h'

v = 0 at the boundary nodes}.

Because of the above assumptions, in particular (4.8), we see that Sh C
Ih

HoP2), i.e., Sh is conforming. The Sh-interpolant of u is defined by

0 h h hS

(4.12)

{(dhU)(P) = u(P) V nodes P of 1h'
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Because of our choice of shape functions, dh u is a good approximation to u.

In Fig. 4.3 we show a typical part of the mesh on Q. "4e show the sets

n I and 0 as well as the elements of the mesh. Note thaL - th the Qi s

and the eiements fit the geometry of the fibers. In Fig. 4.4 we show the

mesh in a neighborhood of the boundary of 12. We see in particular the

interior and the boundary edges of the Qi's. In Fig. 4.5 we show a typical

mesh. We do not show the sets £2i and 0i, but do show the areas where the

coefficient a(x,y) is smooth and where it is rough (the areas with the

fibers). Note that in the area of the fibers we use quadrilaterals elements

while in the area where a(xy) is smooth we use both quadrilateral and

triangular elements. Obviously triangular elements cannot be avoided, but

quadrilateral elements are preferable because they usually lead to higher

accuracy (although with the same rate of convergence).

Fibers of Composites

Boundary of 0i
Boundary of 0i

................. Boundary of the Elements

Fig. 4.3. Typical configuration of the sets li, 01'

and the elements inside n2.
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0Boundar r-1 o0

Boundary of oQ

Fig. 4.4. Typical configuration of' the sets Q 1 and 0
in the neighborhood of 8fl.

Boundary of LI
Fibers

----------------Elements

ig 4I5 A coplt mehfo- eto

I I 8



The approximation property of the spaces Sh  is formalized in

Theorem 4.1. There is a constant C = C(a, ,(E1, ... (Eni'On

M n'+i n' a 1 .... al , d) depending on a, 13, (Ell ) 1 .

(En''7nl n~~n'+ " an' am ,.... a, , and d but independent of h and

u, such that

(4.13) Iu - dhull1, S Ch [flI0 ,Q.

Proof. Consider T e 1h and let dTu be defined by

dTu e span {shape functions on T},

(dT u)(P) = u(P), for all vertices P of T

(cf(4.12)). For i(T) S n' we see that dT u is well defined by noting

successively that (dT u)' (where the prime denotes the transformation from

the variables (x,y) to the variables (E(TI ' 'i4T) is the

~i(T) ~i(T)
dt dt

E i(T) 'i(T) - nT i(T) - T (T)
2 -interpolant

T dt [ dt

E 1 ai(T) 1 aiCT)
T T

of u' at the points P', that (dT u)' (where the tilde denotes the trans-

formation from the variables (9i(T),'I(T)) to the variables

I(T) dt
(4.14) Zi(T) ! ai(T) 1 MT )

is the span{l, Zi(T)' ii(T)' Zi(il(T)}- in t e r po lan t of u' at the points
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Pthat a' e 14(6 from Theorem 2.3, and that the points P', for P a
I(T)

vertex of T, form the vertices of a rectangle In 6 (T Note that the

variables ti(T) and I(T) have here been defined differently than In

C4.5). This is necessary In order that the set 6' depends only on iCT)
I(T)

and not on T. For 1(T) 2: n' + 1 we see that dTu is well-defined by

noting successively that d-u (where the tilde denotes the transformation
T

from the variables (x,y) to the variables F_ 1 Fl(xly), F_ 1 F'(xy)) Is

the spani, Z, i, 6j}-Interpolant of ai If T is a quadrilateral and the

spanfli,Ii}-Interpolant of ai if T Is a triangle, that a e O1(T 0), from

standard elliptic regularity results since T c 0 i()and a(x,y) is smooth

0on f)IM and that the points P are the vertices of the rectangle T .We

note that these observations show that d hu in (4.12) Is well-defined.

Now we estimate lu - d T ul1T. First suppose 1(T) 5 n'. Changing

variables we obtain

lu- ~ ~ V d8l2 =jfa(u - d Tu)j 2 8 (u - d TU) 2dxy

a l - () y (

:5 JTj (u' - (d TU)') 12 + Cau, _ (d.~u)') 2 d -
~~a ~ T ~ i(T) + ~ 81i(T) }di(T)d1IMT
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a ( ' - ( d -u ) ' ) 12 1 a ( ' - ( d u )' ) 2
a J{ 8iT _ + T }() a dt i(T) d Ii(T)

aIMT 8 I(T)

<5 c (, , CiCT),'ICT) ) la' -d-'121,,

where dTu' = (d-u)' denotes the span{l, I(T)' I(T)' ICT)'i(T) -

interpolant of u' on I'. Here ZI(T)' i(T) are as defined in (4.14).

Thus by standard approximation results for bilinear functions (cf. Theorem

3.1.4 in [7]) we have

lU -dTUl 1, T <5 C h lu'{2,,

and hence, for I 5 j -< n',

(4.15a ) lU - d U l , < C h 2  : " 1 ,12 ,T

i(T)=j i(T)=J

2 -2< Ch uh1u 2,6j

Ch 2 uL 2

where C = (... n Now consider i(T) > n' + 1. Using

(4.6) and (4.7) and the usual proof of approximation results (cf. proof of

Theorem 4.3.4 in [7]), we obtain

lu-dTUl T < Ch(lul, T + lul2,T )

and hence, for n' + 1 S j < n,

(4.15b) lU-dTUl 2 ,5C h 2 Z  1u,2 :5 Ch 211ui12
2: 1,T 2 lul,T 2,0

I(T)=j i(T)=j
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For any T, (dhU)I = d Tu, and thus from (4.15a,b) we haveh T T

(4.16) iu-dhu2Q = Id T

lu du 2 +lu- d ul T

T ,T

15j5n' i(T)=j n'+1:5j5n I(T)=j

: Ch2  lUl + N 11u,2J

1:5j:n' n' +1:5j:n

where C = C(a,, (1 .. n(1n,, n,). From Theorem 2.3 we have

Z 2 2 Cifil 2
(4.17) lUlL, o - f

1:j!n'

where C = C(a,g, ( l17l) ..... ( n,,cn,), d). Since a(x,y) is smooth on

9. for j n' + 1, from standard elliptic regularity results we haveJ

(4.18) 2u0  < C)1f 11

n'+ISJ~n J

where C=CM n alC+,...,a , d). As a direct consequence of

(4.16)-(4.18) we get (4.13), as desired. a

Our finite element approximation uh  to u is now defined by

(4.19) h h

{B(u = f fvdx V v E Sh.
Since we are using Sh for both the test and trial space, stability is

immediate. Approximability has been established in Theorem 4.1. We thus

have
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Theorem 4.2. Suppose 0,(gl7 )1 ..... 1(9 nn ), n', a(x,y) satisfy the

asswuptions in the first part of this subsection. Suppose u is the solution

of (1.1) and uh is the solution of (4.19). Then there is a constant C =

C(a, 3,o-,( 1,ii ... 9 n .. , al ...' aI ,d) such that

(4.20) I{u - uhil ,n S Ch 11f11on V f e L2 (9), 0 < h : hO.

4.2. Method IIl'
niConsider the boundary value problem (I.I) and suppose (Cri 9i. Ti)Ii=l'

{(Mil gi )} n'+ a(x,y), and {Oi} I are as described in Subsection

4.1. For 0 < h < h0  let 1h = {T} be a triangulation of 0 by ordinary

triangles together with curvilinear triangles which fit the curved part of

a8, all of diameter 5 h. For any T e 1h let T* be the ordinary triangle

with the same vertices as T. Then 1 = {T'} is a triangulation of 9 by

ordinary triangles, but U T* = U T* is a polygonal approximation to 0 and

TErff TE~h
h

not an exact fit of n. We assume all T* have diameter S h and that

{'}O<hho satisfies the minimal angle condition (3.44) and the quasi-uniform

condition (3.45). Let {P = (x y)IMh be the noes of V; and let @.
j =1 h e Jj

denote the piecewise linear basis function corresponding to P. (and theJ

triangulation 1). If T is curvilinear, then by restricting the domain of

definition of @. or by extending i as a linear function we can assume @j

is linear on T, and hence that @0 is continuous on 5 and linear on each

T. Let S = U T be the finite element star associated with P . Now it is
TE~h
Pj4ET

easily seen that if h0  is sufficiently small, then any S will lie In some

1)() 5 n. Let S c ' be the image of S. n
1: j l()' ( 1(j)

under the mapping lt R l i(j) be the smallest rectangle withunerte apig i(j)' lj ) ltR

sides parallel to the axes containing SC3)' and let R be the preimage
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of R I(j),)under () R I (J)C ' since o' is a

1 ~) ij (J) iCJ)
rectangle, and hence R lies in 0 Define J(J) to be three

r ij). JI

specific vertices of R including all vertices that lie on ail.

Next we define our space of approximating functions. For j 1,...m h

let

(4.21) [ (x, y)
i1(J) pa dt 1

j =j s j y 1 ax')span{ ar)--"' @j(xY) [ninxy) - ]

if 1 : i = i(J) 5 n'

spanfoj (x,y). 0 1(x~y) (x-xj] 1 1(x~y) (Y-y )}

if n' + 1 5 i = I(J) 5 n and 51 nf = o

span j(x,y), I# (x,y) t9 (x,y)-g l 1 0 x, y) [n(x,y)-nf1 1

if n' + 1 : i = !(J) 5 n and 5i n a * 0.

The 3rd line in this definition has been stated for the case in which the

preimages of the points (g1 1) C 71 1) lie on an2. In other

situations we could modify the definition in an obvious way. Then for the

space of approximating functions we choose

mh

(4.22) Sh { v Lv = J, vj E VJ, v = 0 on M}.

J=1

Our finite element approximation uh to u is now defined by

(4.23) B(uh,) =T fv dxdy V v E Sh .
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Since we are using the space Sh  for both the test and the trial space,

stability is immediate. To study the convergence of the method (4.23) we need

to prove an approximation result for the spaces S h} o<h 1 . This is done by

combining the ideas of Subsections 3.3 and 4.1.

Let d1 j)hu be defined by
J,h

j(x'y)
1(j) ut 1 [1d if 1 5 1 1 1(j) 5 n'

(4.24) d uh spanj1, T a( ) (~x,y -)

J~an f laU. 8Q0

1

spanfl, x-x j, y-y j} If n' + 1 5 i i(j) 5 n

and r% af) o

span{1, i(x,y)- ), .i(x'Y) -  1 }

if n' + 1 5 I = i(j) :5 n and 5. r )Q = o.1

(d ij U) (P) =U(P) VP E IJ )
J~J

d1(j)
d u is a good approximation to u on S as made precise in

j,h J'

Theorem 4.3. There is a constant C = C(c1,( 1 ,i) .n. (nij)) such that

(425) u - d I(J)ul lul (J) if 1 5 i(j) :5 n'
J,h k,Sj PL() R

C k ull2,R ) , If n'+l 5 i(j) 5 n

Pk(j) 'PR

for J= 1....m h , k = 0,1.

65



We omit the proof of this result since it is similar to that of Theorem 3.8.

The approximability result for {S h} o<hh is given in

Theorem 4.4. There is a constant C = C(a,1,u, ,( 1,71 1 nn such

that

Mh nn

(4.26) Iu- u ih  n Ch{ uL.O + Z lull2 ,0i

J=1 11=1 i=n'+l

We omit the proof of this result since it is similar to that of Theorem 3.9.

Finally as a consequence of (4.26), Theorem 2.3, and 7tandard elliptic

regularity results we have

Theorem 4.5. Suppose Q, (i, ... n(nn), n', and a(x,y) satisfy the

assumptions in the first part of this subsection. Suppose u is the solution

of (1.1) and uh  is the solution of (4.23). Then there is a constant C

C (X, , V, , , ..... 1(9nITin ), n', d) such that

(4.27) Iu-uhll,, : ChIlf~lo n  V f e L 2(Q), 0 < h 5 h0 '

4.3. Comments on Method I' and III'

The diffe-ences and similarities of Methods I' and III' are similar to

those of Methods I and III, which were discussed in Subsection 3.4. We note

that with Method I' we have to fit the elements to the geometry of the fibers

of the composite, as seen in Fig. 4.5. This is not necessary in the case of

Method III', and this freedom could be utilized in many situations. For

example, suppose the coefficient is changing rapidly but not abruptly along a

line. Then Method III' could be used, leading to an enrichment of th- usual

finite element space by special shape functions in the neighborhood of the

line.

66



Implementational considerations and computational studies of Methods I,

II, III, I', and III' will be presented in a forthcoming paper.
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